GIS Unit 1

Geographical Phenomenon and their representation

GIS Training -Day 2 @IOE, Pulchowk

Presented By:

Uttam Pudasaini Geomatics Engineer

www.naxa.com.np

Geographic Phenomena

- ☐ Events that takes place in geographic space and time.
- ☐ Choice for a digital representation depends on the type of phenomenon.

☐Can be:

☐ Artificial: Buildings

☐ Natural: Rivers

☐ Mixed Type: Pollution

Clip s

Data Types

- ☐Two types of data
 - ☐ Spatial Data
 - ■Non-spatial or Attribute data

Spatial Data

- ☐ Data related to location.
- ☐ Example: Coordinate of center of a football ground

Non-spatial Data

- □ Describes such aspects of the spatial data which is not specified by its geometry alone.
- Example: Name of roads, schools, forests etc., Population or census data etc.

Groups of Geographical Phenomenon

Two common groups of geographic phenomena:

Fields

- ☐ For every point in the study area, a value can be determined.
- □All changes in field values are gradual.
- ☐ Example: Elevation, Temperature.

Objects

- ☐ Well distinguishable discrete entities.
- ☐ Empty spaces in between the features.
- ☐Study space grouped into mutually exclusive bounded parts.
- ☐ Example: Buildings, Roads

Clip sl

Putting your data into GIS

☐ What original raw data is available?

☐What sort of data manipulation does the application want to perform?

Vector Representations

- ☐ Represents each Geographic feature by a set of coordinates.
- ☐ An attempt to represent the object as exactly as possible.
- □All positions, lengths, and dimensions to be defined precisely.

- ☐ Point representation
 - ☐ Defined as single coordinate pairs (x,y) in 2D and (x, y, z) in 3D
- ☐ Line Representation
 - ☐ Defined by 2 end nodes and 0-n internal nodes in between
- ☐ Area Representation
 - ☐ Represent each polygon as a set of XY co-ordinates of the boundary
- □TIN Representation

Raster Representation

- ☐ Entire space is broken into grid cells of a fixed or uniform size.
- ☐ Used Commonly to represent Geographic Fields.
- ☐ Each grid cell is referenced by a row and column number.

☐A point is represented by a single grid cell.

Point features

Raster point features

□ A line by a number of neighboring cells strung out in given direction.

Line features

Daster line features

□An area by an agglomeration of neighboring cells.

Polygon features

Raster polygon features

Comparison

VECTOR

- ☐ Complex data Structure
- ☐ Easy association with attribute data
- ☐ Efficient representation of topology
- ☐Overlay of several vector polygon maps creates difficulties

RASTER

- ☐ Simple Data Structure
- ☐ Difficult to associate attribute data
- ☐ Difficult in representing topology.
- ■Overlay and combination of data is easier

REAL WORLD

- ☐ Both structure are inter-convertible.
- ☐ Conversion from Vector to Raster
 - ☐ Is simplest
 - ☐ Many well known algorithms exist.
- ☐ Conversion from Raster to Vector
 - ☐ Much more complex operation.

Choice between Vector and Raster

- ☐ Use VECTOR data structures for
 - ☐Geographical objects like buildings ,Roads etc.
 - ■Network analysis: Transportation networks, Telephone networks etc.
- ☐ Use RASTER methods
 - ☐ Representing continuous geographical fields
 - ■When it is necessary to work with surfaces; Simulation and modeling
 - ☐ Spatial analysis , Map overlays, etc.

Conclusion

