F.Y.B.COM Sem-II

Mathematical \& Statistical Techniques-II

Prof. Anil O. Khadse
Sheth NKTT College,
Thane

Mathematics

Module-I : Derivatives \& its Applications Marks:20
Module-II : -Interest -Annuity

Statistics

Module-III : -Correlation
dse Regression
Marks:20
Módule-IV: -Index Number
-Time series
Marks:20
Module-V : Probability Distribution Marks:20

Module-III
 Correlation \& Regression

Correlation

Correlation means Finding the relationship between two quantitative variables without being able to infer causal relationships

Correlation is a statistical technique ased to determine the degree to which two variables are related
e.g Demand \& Supply,

Income \& Expenditure
Age and Height of Children
Study Hours \& Score

- Are two variables related?
- Does one increase as the other increases?
- e. g. skills and income
- Does one decrease as the other increases?
- e. g. health problems and nutrition
- How can we get a numerical measure of the degree of relationship?

Types of Correlation

Positive Correlation:
If two series move in same direction that is one increases other also increases or both decreases, there is positive correlation between the T between the variables. variables.
Example:
Income \& Expenditure
Study hrs \& score
Age of Husband \& wife

Methods to determine Correlation

- Scatter Diagram
- Karl Pearson's Correlation coefficient
- Spearman's Rank Correlation Coefficient ${ }^{\prime}$

Scatter Diagram

Scatter Diagram gives us the idea about existence of the relation between variables.

In scatter diagram one of the variable is consider on X -axis and other on Y-axis.

The points are plotted on graph and from the direction of the movement of the points we can conclude on the relationship

Positive Correlation

Negative Correlation

Positive Correlation

Negative relationship

Karl Pearson's Coefficient of correlation (r)/Product Moment

If $(x 1, y 1),(x 2, y 2)----(x n, y n)$ are n pairs of observations of two variable X and Y, Karl Pearson Coeff. of correlation s denoted by r and defined as

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{n \cdot \sigma_{x} \cdot \sigma_{x}} \quad \text { ege, }-\cdots-\text { - (i) }
$$

Where, $\bar{x}=$ Mean of x values
有 $=$ Mean of y values
$\sigma_{x}=s . d$ of x values
$\sigma_{y}=s, d$ of y values

$$
\begin{equation*}
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2}} \cdot \sqrt{\sum(y-\bar{y})^{2}}} \tag{ii}
\end{equation*}
$$

$$
r=\frac{\operatorname{Cov}(x, y)}{n \cdot \sigma_{x} \cdot \sigma_{y}}
$$

-------Fh(iiii)

After substituting the values of mean and s.d

$$
\begin{equation*}
r_{\text {A }} \rightarrow \frac{\text { khadse }}{} \frac{\sum x y-\sum x \sum y / n}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right) 2}{n}} \cdot \sqrt{\sum y^{2}-\frac{\left(\sum y\right) 2}{n}}} \tag{iv}
\end{equation*}
$$

Interpretation of r :

$>$ The value of r ranges between (-1) and $(+1)$
$>$ The value of r denotes the strength of the association as illustrated by the following diagram.

1. If $0<r<1$, then positive correlation
2. If $-1<r<0$, then Negative correlation
3. If $r=+1$, then Perfect positive correlation
4. If $r=-1$, then Perfect negative correlation
5. If $r=0$, then No correlation

Example \# 1
Calculate Karl Pearson's coefficient of correlation for the following data

X	12	10	8	13	7
Y	15	20	25	18	22

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}(y-h \overline{\bar{y}})^{2}$	$(x-\bar{x})(y-\bar{y})$	
12	15	2	-5	4	25	-10
10	20	0	N	0	0	0
8	25	$5-2$	5	4	25	-10
13	$<h 18$	3	-2	9	4	-6
-7	22	-3	2	9	4	-6
50	100			26	58	-32

$$
\begin{gathered}
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2}} \cdot \sqrt{\sum(y-\bar{y})^{2}}} \\
r=\frac{-32}{\sqrt{26} \cdot \sqrt{58}} \\
r=\frac{-32}{5.099 \times .7 .6157} \\
r=\frac{-32}{38.8324} \\
\therefore 1 k T T \\
r=-0.8240
\end{gathered}
$$

There is -ve correlation

Example \# 2
Find Karl Pearson's coefficient of correlation for the following data

$\begin{aligned} & \text { serial } \\ & \text { No } \end{aligned}$	Age (years)	Weight (Kg)
1	7	12
2	6	8
3	8	12
4	5	UKT10
5	6 beth	11
6	dse_{9}	13

Sr.No	x	y	xy	X^{2}	Y^{2}
1	7	12	84	49	144
2	6	8	48	36	64
3	8	12	96	64 d	144
4	5	10	- 50 lley	25	100
5	6	+ 11	66	36	121
6	ds $9{ }^{\text {S }}$	13	117	81	169
A TTotal	$\sum_{41} \mathrm{x}=$	$\underset{66}{\Sigma y=}$	$\begin{array}{r} \Sigma x y= \\ 461 \end{array}$	$\begin{gathered} \sum \times 2= \\ 291 \end{gathered}$	$\begin{aligned} & \text { Ey2= } \\ & 742 \end{aligned}$

$$
\begin{aligned}
& r=\frac{\sum x y-\sum x \sum y / n}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right) 2}{n}} \cdot \sqrt{\sum y^{2}-\frac{\left(\sum y\right) 2}{n}}} \\
& \begin{array}{l}
r=\frac{461-\frac{41 \times 66}{6}}{\sqrt{\left[291-\frac{(41)^{2}}{6}\right] \cdot\left[742-\frac{(66)^{2}}{6}\right]}} \\
r=\frac{461-451 N K T ।}{\sqrt{291-280.1666} \cdot \sqrt{742-726}}
\end{array} \\
& r=\frac{10}{\sqrt{10.8334} \cdot \sqrt{16}} \\
& r=\frac{10}{3.2914 \times 44^{1 i k h a d s e ~ N k T T ~ c o l l e g e, ~ T h a n e ~}} \\
& r=\frac{10}{13.1656} \\
& r=0.7595
\end{aligned}
$$

Example \#3 : Calculate Coefficient of correlation from the following information

$$
n=12, \Sigma x=35, \Sigma y=60, \Sigma x^{2}=148 \cdot \Sigma y^{2}=450, \Sigma x y=105
$$

$$
\begin{array}{r}
r=\frac{\sum x y-\sum x \sum y / n}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right) 2}{n}} \cdot \sqrt{\sum y^{2}-\frac{\left(\sum y\right) 2}{n}}} \\
r=\frac{105-35 \times 60 / 12}{\sqrt{148-\frac{(35)^{2}}{12 e}} \cdot \sqrt{450-\frac{(60)^{2}}{12}}} \\
r=\frac{n i l k h a 105-175}{\sqrt{148-\frac{1225}{12}} \cdot \sqrt{450-\frac{3600}{12}}}
\end{array}
$$

$$
\begin{aligned}
& r=\frac{-70}{\sqrt{148-102.0833} \cdot \sqrt{450-300}} \\
& r=\frac{-70}{\sqrt{45.9187} \cdot \sqrt{150}} \\
& r=\frac{-70}{6.7763 .12 .2474} \\
& r=\frac{-70}{82.9923} \text { NKTT College, T } \\
& h r=-0.84
\end{aligned}
$$

Example \#4: Calculate Coefficient of correlation from the following results $n=8, \sum(x-\bar{x})^{2}=84, \sum(y-\bar{y})^{2}=158, \sum(x-\bar{x})(y-\bar{y})=111$

$$
\begin{gathered}
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2}} \cdot \sqrt{\sum(y-\bar{y})^{2}}} \\
r=\frac{111}{\sqrt{84} \cdot \sqrt{158}} \\
r=\frac{111}{9.1651 .12 .5698} \\
r=\frac{111}{115 . .2035}
\end{gathered}
$$

$$
r=0.9635
$$

Example \#5: Calculate Coefficient of correlation from the following results $n=8$, s.d of $x=3.86, s, d$ of $y=6.57 \sum(x-\bar{x})(y-\bar{y})=192$

$$
\begin{gathered}
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{n . \sigma_{x} \cdot \sigma_{y}} \\
r=\frac{192}{8 \times 3.86 \times 6.57} \\
r=\frac{192}{202.8816} \\
r=0.9463=0.95
\end{gathered}
$$

Exercise \# 1

Calculate Karl Pearson's coefficient of correlation for the following data

X	14	8	10	11	9	13	5
Y	14	9	11	13	11	12	4

Ans: 0.9231

Excercise\#2 : Calculate Coefficient of correlation from the following information $n=25, \Sigma x=75, \Sigma y=100, \Sigma x^{2}=250 ; \Sigma y^{2} \neq 500, \Sigma x y=325$

Example \#3: Calculate Coefficient of correlation from the following results $n=8, \sum(x-\bar{x})^{2}=100, \sum(y-\bar{y})^{2}=195, \sum(x-\bar{x})(y-\bar{y})=85$

Spearman's Rank Correlation Coefficient (R)

It is applicable for quantitative as well as qualitative data
The given values of the variable are assigned the rank in order, and these rank provides data to calculate correlation. It is denoted by R and defined as

$$
R=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

Where, $d=R 1$ R2: Difference between ranks

$$
R 1=\text { Rank for first variable or } x
$$

$R 2=$ Rank for Second variable or y
$n=$ No. of pairs of observation

Example \#1: Calculate Rank correlation coefficient from the following

Rank by Judge -A	5	2	1	4	3
Rank by Judge-B	4	2	3	5	1

R1	R2	d=R1-R2	$\mathrm{d}^{2} e$
5	4	1 eg e	1
2	2	CO_{0}	0
1	eth3	-2	4
, ocas ${ }^{\text {a }}$	5	-1	1
3	1	2	4
			$\Sigma \mathrm{d}^{2}=10$

$$
n=5
$$

$$
\begin{aligned}
& R=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \\
& R=1-\frac{6 \times 10}{5\left(5^{2}-1\right)} \\
& R=1-\frac{60}{5(25-1)},\ulcorner\text { colle } \\
& R=1-\frac{60}{5(24)} \\
& R=1-\frac{60}{120} \\
& R=1-0.5=0.5
\end{aligned}
$$

Example \#2: Find Rank correlation coefficient from the following data

Demand	15	22	20	30	25
Supply	18	25	26	28	20

Sol: Let R1 denotes rank for demand and R2 denotes rank for supply

x	y	$R 1$	$R 2$	d	d^{2}
15	18	5	5	0 g	0
22	25	3	$3 T$	0	0
20	26	4	2	2	4
30	28	1	1	0	0
$\operatorname{Ar25}$	20	2	4	-2	4
					$\Sigma d^{2}=8$

$$
\mathrm{n}=5
$$

$$
\begin{aligned}
& R=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \\
& R=1-\frac{6 \times 8}{5(52-1)} \\
& R=1-\frac{48}{5(25-1)},\ulcorner\text { colle } \\
& R=1-\frac{48}{5(24)} \\
& R=1-\frac{48}{120} \\
& R=1-0.4=0.6
\end{aligned}
$$

Example\# 3
The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8 . If the sum of squares of the differences in ranks is 33 . Find the number of students in the group.
Given: Rank correlation $\mathrm{R}=0.8$

$$
\begin{array}{l|c}
\sum d^{2}=33, \mathrm{n}=? \\
R=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} & -0.2=-\frac{198}{n\left(n^{2}-1\right)} \\
0.8=1-\frac{6 \times 33}{n\left(n^{2}-1\right)} & \begin{array}{c}
n\left(n^{2}-1\right)=198 / 0.2 \\
n\left(n^{2}-1\right)=198 / 0.2=990 \\
0.8-1=-\frac{6 \times 33}{n\left(n^{2}-1\right)}
\end{array} \\
\begin{array}{c}
n\left(n^{2}-1\right)=10\left(10^{2}-1\right) \\
n=10
\end{array}
\end{array}
$$

Rank correlation for repeated values:

If the values are repeated then the common rank is assigned by considering average of the ranks to all repeated values.

If the values are repeated then the correction factor is added to $\sum d^{2}$ to find rank correlation

$$
C . F=\frac{\sum m\left(m^{2}-1\right)}{12}
$$

$C . F=\frac{1}{12}\left[\left(m_{1}\left(m_{1}{ }^{2}-1\right)+m_{2}\left(m_{2}{ }^{2}-1\right)+\cdots---\right]\right.$

$$
R=1-\frac{6\left(\sum d^{2}+C . F\right)}{n\left(n^{2}-1\right)}
$$

Example \#2: Find Rank correlation coefficient from the following data

X	25	20	20	18	32	35
y	58	55	48	62	55	40

Sol: Let R1 denotes rank for demand and R2 denotes rank for supply

X	y	R1	R2	d	$\mathrm{d}^{2} \mathrm{n}$	20 repeated twice Rank $=4+5 / 2=4.5$ $\mathrm{m} 1=2$
25	58	3	2	1 g e	1	
20	55	4.5	-3.5	1	1	
20	48	he4.5	5	-0.5	0.25	55 repeated twice
18	162	6	1	5	25	Rank $=3+4 / 2=3.5$
Ar32	55	2	3.5	-1.5	2.25	$\mathrm{m} 2=2$
35	40	1	6	-5	25	

$$
\begin{aligned}
& C . F=\frac{1}{12}\left[\left(m_{1}\left(m_{1}^{2}-1\right)+m_{2}\left(m_{2}^{2}-1\right)\right]\right. \\
& C . F=\frac{1}{12}\left[\left(2\left(2^{2}-1\right)+2\left(2^{2}-1\right)\right]\right. \\
& C . F=\frac{1}{12}[(2(4-1)+2(4-1)] \\
& \left.C . F=\frac{1}{12}[6+6)\right]=12 / 12=1
\end{aligned}
$$

$$
\begin{gathered}
R=1-\frac{6\left(\sum d^{2}+C . F\right)}{n\left(n^{2}-1\right)} \\
R=1-\frac{6(54.5+1)}{6\left(6^{2}-1\right)} \\
R=1-\frac{333}{6(36-1)}
\end{gathered}
$$

$$
\begin{aligned}
& R=1-\frac{333}{6(35)} \\
& R=1-\frac{333}{(210)}
\end{aligned}
$$

$$
R=1-1.5857
$$

$$
R=-0.5857
$$

Regression

$>$ Regression method is use to predict / Estimate one variable (dependent) when the value of independent variable is known
$>$ Tells you how values in y change as a function of changes in values of x
1.Businessman wants to know effect of increase in advertising onsales.
2.To find the effect of change in demand pattern of some commodities on price

Types of Regression

Regression Equation of y on x

Regression Equation of x on y

1. Regression equation of y on x

It is used to estimate the value of dependant variable y when the value of independent variable x is given Regression equation of y on x is given by

$$
y=a+b x
$$

$$
y-\bar{y}=\operatorname{byx}(x-\bar{x})
$$

$y=\operatorname{byx}(x-\bar{x})+\bar{y}_{N K T T}$

$$
\bar{x}=\text { mean of } X, \bar{y} \triangleq \text { mean of } Y
$$

byx $=$ regression coeff of y on x

$$
b y x=r \cdot \frac{\sigma_{y}}{\sigma_{x}}
$$

$$
b y x=\frac{\sum x y-\frac{\sum x \cdot \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right) 2}{n}}
$$

2. Regression equation of x on y

It is used to estimate the value of dependant variable x when the value of independent variable y is given

Regression equation of x on y is given by

$$
\begin{aligned}
& x=a+b y \\
& x-\bar{x}=b x y(y-\bar{y})
\end{aligned}
$$

$$
x=b x y(y-\bar{y})+\bar{x}
$$

bxy =regression coeff of x on y

$$
b x y=r \cdot \frac{\sigma_{x}}{\sigma_{y}}
$$

$$
b x y=\frac{\sum x y-\frac{\sum x \cdot \sum y}{n}}{\sum y^{2}-\frac{\left(\sum y\right) 2}{n}}
$$

Linear Equations

Example \#1 Find two regression equations from the following data

x	8	7	10	9	5	6
y	11	8	12	13	8	10

x	y	x^{2}	y^{2}	xy
8	11	64	121	88
7	8	49	64	56
10	12	64	100	144
9	$13 e^{t h}$	81	169	120
5	8	25	64	40
Anil6	10	36	100	60
$\Sigma x=$	$\Sigma y=$	Σx^{2}	$\Sigma y^{2}=$	$\Sigma x y=$
45	62	355	662	481

$$
\begin{gathered}
\mathrm{n}=6 \quad \bar{x}=\frac{\sum x}{n}=\frac{45}{6}=7.5 \quad \bar{y}=\frac{\Sigma y}{n}=\frac{62}{6}=10.33 \\
b y x=\frac{\sum x y-\frac{\sum x \cdot \Sigma y}{n}}{\sum x^{2}-\frac{\left(\sum x\right) 2}{n}} \\
b y x=\frac{481-45 \times 62 / 6}{355-\frac{(45)^{2} / k}{5}} \\
\text { College, Thane } \\
\text { Abyx }=\frac{481-465}{355-337.5}
\end{gathered}
$$

$$
b y x=\frac{16}{17.5}=0.91
$$

$$
b x y=\frac{\sum x y-\frac{\sum x \cdot \sum y}{n}}{\sum y^{2}-\frac{\left(\sum y\right) 2}{n}}
$$

$$
b x y=\frac{16}{662-\frac{(62)^{2}}{5\left(66^{2}\right.}}
$$

$$
b x y=\frac{\text { khad } 16}{662-640.666}
$$

$$
b x y=\frac{16}{21.34}=0.75
$$

Regression equation of y on x is given by

$$
\begin{gathered}
y=\operatorname{byx}(x-\bar{x})+\bar{y} \\
y=0.91(x-7.5)+10.33 \\
y=0.91 x-0.91 \times 7.5+10.33 \\
y=0.91 x+6.825+10.33 \\
\begin{array}{l}
\text { hadse } \\
y=0.91 x+3.505
\end{array}
\end{gathered}
$$

Regression equation of x on y is given by

$$
\begin{gathered}
x=b x y(y-\bar{y})+\bar{x} \\
x=0.75(y-10.33)+7.5 \\
x=0.75 y-0.75 \times 10.33+7.5 \\
x=0.75 y-7.7475+7.5 \\
x=0.75 y-0.2475 \\
\hline
\end{gathered}
$$

Example \# 2

For bivariate distribution, Mean of $x=65$, Mean of $y=53$
s.d of $x=4.7$
s.d of $\mathrm{y}=5.2$
Correlation Coeff $=0.78$

Find two regression equations and estimate
i) The most probable value of y when $x=63$
ii) The most probable value of x when $y=50$

Given: $\bar{x}=65 \quad, \bar{y}=53, \quad \sigma x \neq 4.7, \quad \sigma y=5.2, \quad r=0.78$

$$
\begin{aligned}
& \text { byx }=r \cdot \frac{\sigma_{y}}{\sigma_{*}} \\
& \hline \begin{array}{l}
\text { Any }=r \cdot \frac{\sigma_{x}}{\sigma_{y}}
\end{array}=0.78 \cdot \frac{4.7}{5.2}=0.78 . \frac{4.2}{4.7}=0.86=0.71
\end{aligned}
$$

Regression equation of y on x is given by

$$
\begin{aligned}
& y=\operatorname{byx}(x-\bar{x})+\bar{y} \\
& y=0.86(x-65)+53 \\
& y=0.86 x-0.86 \times 65+53 \\
& y=0.86 x-55.9+53 \\
& y=0.86 x-2.9 \\
& \text { When } \mathrm{x}=63 \\
& y=0.86 \times 63-2.9 \\
& y=51.28 \\
& y=54.18-2.9
\end{aligned}
$$

Regression equation of x on y is given by

$$
\begin{gathered}
x=b x y(y-\bar{y})+\bar{x} \\
x=0.71(y-53)+65 \\
=0.71 y-0.71 \times 53+65 \\
=0.71 y-37.63+65 \\
x=0.71 y+27.37 \backslash
\end{gathered}
$$

When $\mathrm{y}=50$

$$
\text { Anix }=0.71 \times 50+27.37
$$

$$
x=62.87
$$

$$
x=35.5+27.37
$$

Example \# 3
For bivariate distribution, Mean of $x=43, \quad$ Mean of $y=37$
Regression coeff. of y on $x=0.59$
Regression Coeff of x on $y=0.72$
Find two regression equations and estimate
i) Likely value of y when $x=40$
ii) Likely value of x when $y=35$

Given: $\bar{x}=43 \quad, \bar{y}=37$ ath \quad by $x=0.59, \quad$ bxy $=0.72$,
Regression equation of y on x is given by

$$
y=\operatorname{byx}(x-\bar{x})+\bar{y}
$$

$$
\begin{gathered}
y=0.59(x-43)+37 \\
y=0.59 x-0.59 \times 43+37 \\
y=0.59 x-25.37+37 \\
y=0.59 x+11.63
\end{gathered}
$$

When $\mathrm{x}=40$

$$
y=0.59 \times 40+11.63
$$

$$
y=23.6+11.63=35.23
$$

Regression equation of x on y is given by

$$
\begin{gathered}
x=b x y(y-\bar{y})+\bar{x} \\
x=0.72(y-37)+43 \\
x=0.72 y-0.72 \times 37+43 \\
x=0.72 y-26.64+43 \\
x=0.72 y+16.36 \\
\text { When } y=35 \text { NKT Co } \\
x=10.72 \times 35+16.36 \\
x=41.56 \\
x=1
\end{gathered}
$$

Example \# 4

Given the following data, find two regression equations. Also estimate y if $x=60$ and x if $y=37$

	x	Y
Mean	65	39
s.d	4.3	1.2 ge, Thane

Correlation Coefficient $=0,75$
Given: $\bar{x}=65 \quad, \bar{y}$ ज $39, \quad \sigma x=4.3, \quad \sigma y=1.2, \quad r=0.75$

$$
b y x=r \cdot \frac{\sigma_{y}}{\sigma_{x}} \quad b y x=0.75 \times \frac{1.2}{4.3} \quad \text { byx }=0.21
$$

$b x y=r . \frac{\sigma_{x}}{\sigma_{y}} \quad b x y=0.75 \times \frac{4.3}{1.2}=2.69$
Regression equation of y on x is given by

$$
\begin{aligned}
& y=0.21(x-65)+39 \\
& y=0.21 x-13.65+39 \text { college, Th } \\
& y=0.21 x+25.35 \\
& \begin{array}{l}
y=0.21 \times 60+25.35 \quad \text { Put } x=60 \\
y=37.95
\end{array}
\end{aligned}
$$

Regression equation of x on y is given by

$$
\begin{aligned}
& x=b x y(y-\bar{y})+\bar{x} \\
& x=2.69(y-39)+65 \\
& x=2.69 y-104.91+65 \\
& x=2.69 y-39.91 \\
& x=2.69 \times 3 \text { 和 } 39.91 \\
& \text { Put } y=37 \\
& 15 x=99.53-39.91 \\
& x=59.62
\end{aligned}
$$

Properties of regression lines

$>$ The two regression lines coincide if there is perfect +ve or perfect - ve correlation between the variables.
$>$ The two regression line are perpendicularnto each other if there is no correlation between the variables.
$>$ The point (\bar{x}, \bar{y}) satisfies \mid both the regression equations
$>$ Relation between correlation and regression coefficients is

$$
r= \pm \sqrt{b y x . b x y}
$$

Sign of corr coeff. r depends on the sign of regression coefficients. i) r is positive if both the regression coefficients are positive ii) r is negative if both the regression coefficients are negative

From the given regression equations, regression coefficients can be obtained as
From reg. equation of y on $x \backslash T$

$$
\text { byxt }=\frac{\text { Coefficient of } x}{\text { Coefficient of } y}
$$

From reg. equation of x on y

$$
b x y=-\frac{\text { Coefficient of } y}{\text { Coefficient of } x}
$$

Example \# 5
The regression equation of y on x is $x+3 y-88=0$ and that of regression equation of x on y is $2 x+y-71=0$.
Find i) Mean values of x and y
ii) Coefficient of correlation

SOL: To find mean values, solve two regression equations

$$
\begin{aligned}
& x+3 y-88=0----- \text { (i) } \times 2 \text { college, } \\
& 2 x+y-71=0 \\
& 2 x+6 y-176=0 \text { she- - (i) } \\
& 2 x+y-71=0----- \text { (ii) } \\
& -\quad+\quad . \\
& 5 y=105 \\
& y=21
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put } \mathrm{y}=21 \text { in equation (i) } \\
& x+3 y-88=0 \\
& x+3 \times 21-88=0 \\
& x+63-88=0 \\
& x=25 \\
& \bar{x}=25, \bar{y}=21
\end{aligned}
$$

ii) To find r

The regression equation of y on x is $x+3 y-88=0$

$$
\begin{aligned}
& b y x=-\frac{\text { Coefficient lof } x}{\text { Coefficient of } y} \\
& b y x \neq-\frac{1}{3}
\end{aligned}
$$

Regression equation of x on y is $2 x+y-71=0$.

$$
\begin{aligned}
& b x y=-\frac{\text { Coefficient of } y}{\text { Coefficient of } x}=-\frac{1}{2} \\
& r= \pm \sqrt{\text { byx.bxy }} \\
& r= \pm \sqrt{-\frac{1}{3} \times-\frac{1}{2}}=-\sqrt{\frac{1}{6}} \\
& r=-\sqrt{0.1666} \\
& \text { un }=-0.4082
\end{aligned}
$$

Example \# 6
Given two regression equations $2 x+3 y=5$ and $x+y=2$.
Find i) Mean values of x and y
ii) Coefficient of correlation

SOL: To find mean values, solve two regression equations

$$
\begin{aligned}
& 2 x+3 y=5------ \text { - (i) } \\
& x+y=2 \quad------(i i) \times 2 \\
& 2 x+3 y=5 \\
& 2 x+2 y=4 \quad \text { subtract ii from } i \\
& \text { Put } y=1 \text { in equation ii } \quad x+1=2 \quad \Rightarrow x=1 \\
& \bar{x}=1 \& \bar{y}=1
\end{aligned}
$$

ii) To find r

Let regression equation of y on x is $2 x+3 y=5$

$$
\text { byx }=-\frac{\text { Coefficient of } x}{\text { Coefficient of } y} \quad \text { by } x=-\frac{2}{3}
$$

Regression equation of x on y is $x+y=1$.e

$$
b x y=-\frac{\text { Coefficient of } y}{\text { Coefficient of } x} \quad \text { by } x=c-\frac{1}{1} \triangleq-1
$$

$$
\begin{array}{rr}
r= \pm \sqrt{\text { byx.bxy }} \quad r= \pm \sqrt{-2 / 3 \times-1} \\
\text { Anil Knum } & r=-\sqrt{0.6666}
\end{array}
$$

$$
r=-0.8165
$$

Exercise\#1 Find two regression equations from the following data and Estimate y when $\mathrm{x}=16$ and x when y 18

x	3	4	6	10	12	13
y	12	11	15	16	19	17

Example \# 2

For bivariate distribution, Mean of $x=25, \quad$ Meancof $y=152$

$$
\text { s.d of } x=1.8 \quad \text { s.d of } y=5.7, \quad \text { CorrelationCoeff }=0.82
$$

Find two regression equations and estimate y if $x=23$ and x if $y=145$
Example \# 3
Given the following data, find two regression equations. Also estimate age of wife if age of husband is 25 .

	Husband	Wife
	Average age	27 years
	23 years	
s.d	3 years	2 years

Correlation Coefficient $=0.75$ ला

Example \# 6

Given two regression equations $3 x-y-25=0$ and $2 x-3 y+30$
$=0$.
Find i) Mean values of x and y
ii) Coefficient of correlation
iii) s.d of x if $s . d$ of y is 2
$b x y=r \cdot \frac{\sigma_{x}}{\sigma_{y}}$
$1 / 3 \cong 0.4714 . \frac{\sigma_{x}}{2}$
$2 / 3=0.4714 . \sigma_{x}$

$$
1.41=\sigma_{x}
$$

